Department of Pesticide Regulation Environmental Monitoring Branch 1001 I Street Sacramento, California 95812 April 15, 2003 # STUDY 219: MONITORING SURFACE WATERS AND SEDIMENTS OF THE SALINAS AND SAN JOAQUIN RIVER BASINS FOR SYNTHETIC PYRETHROID PESTICIDES. #### I. INTRODUCTION The Salinas and San Joaquin Valleys are important agricultural regions in California, with concomitant use of a wide variety of pesticides throughout the summer growing season (DPR, 2001, 2002). The effects of pesticides applied during the summer months on the quality of surface waters in these rives basins is not well documented. Surface water monitoring in the San Joaquin basin during the summer season has been spotty, and is virtually non-existent in the Salinas River Basin. There is very limited summer sampling data for pesticides – including pyrethroids in these river basins. Therefore, this study was designed to characterize the current summer season distributions and concentrations of selected pesticides in water and sediment. The pyrethroids were selected for monitoring based on on three criteria: (a) their relatively high use, (b) their high potential aquatic toxicities, and (c) a lack of current monitoring data. # Pyrethroid insecticides: bifenthrin, cyfluthrin, cypermethrin, esfenvalerate, lambda-cyhalothrin and permethrin. Pyrethroid insecticides are used on a variety of crops in the Salinas and San Joaquin River basins. During May through October 2001, the combined reported use (DPR 2002) of bifenthrin, cyfluthrin, cypermethrin, esfenvalerate, lambda-cyhalothrin and permethrin in Monterey County (primarily in the Salinas River Basin) was 383, 328, 1,602, 2,189, 242, and 25430 lbs active ingredient (AI) respectively. In the five-county San Joaquin basin area (Fresno, Madera, Merced, San Joaquin, and Stanislaus counties), combined use of these pyrethroid insecticides was 4,495, 3,973, 1,628, 4,491, 1399, and 12,728 pounds AI, respectively. Use by pesticide for each of the San Joaquin and Salinas River Basin Counties is presented in Table 1. These pyrethroids were chosen for monitoring in this study because of a lack of summer monitoring data for these compounds in the Salinas and San Joaquin Valleys, and because of their potential for aquatic or sediment toxicity (Table 2). #### Organophosphate insecticides: A wide variety of organophosphate insecticides, including diazinon and chlorpyrifos, are applied in both river basins basin during the summer season (DPR, 2002; 2001), and have been detected in San Joaquin Valley surface water (USGS, 1998). These include several of the pesticides listed in the organophosphate analytical screens shown in Table 2. All water samples will be analyzed to provide current information on the presence of these known contaminants during summer months due to ongoing concerns over the impact of organophosphates on water quality. #### II. OBJECTIVE The purpose of this monitoring project is to determine if six pyrethroids used in the dry summer season in the San Joaquin Valley and Salinas Valley are present in the surface waters and sediments of these regions in measurable concentrations, and if so, what representative ranges of concentrations may be observed. The secondary objective is to provide recent summer season monitoring data for organophosphate in the two regions. The results will be used to aid in the development of priorities for future monitoring and/or mitigation efforts. #### III. PERSONNEL Staff from the Environmental Monitoring Branch, Surface Water Protection Program, under the general direction of Kean S, Goh, PhD., Agricultural Program Supervisor IV, will conduct this study. Key personnel are listed below: Project Leader: Kevin Kelley Field Coordinators: Keith Starner Senior Scientist: Frank Spurlock Laboratory Liaison: Carissa Ganapathy Chemists: To be determined To resolve questions concerning this monitoring project please contact Kevin Kelley at (916) 324-4187. #### IV. STUDY PLAN Two monitoring sites in each basin will be selected based on local historical pesticide use, and priority will be given to tributary watercourses consisting primarily of agricultural drainage. Additionally, the site selection process will follow the general guidelines in Standard Operating Procedure (SOP) FSWA002.00 (Bennett, 1997). Sampling will commence in early May 2003 and continue throughout the summer until late September 2003. Each site will be sampled once per week. #### V. SAMPLING METHODS At each sampling site, a single pyrethroid grab sample will be collected directly into a 1-liter amber glass bottle. Grab samples will be collected as close to center channel as possible using a grab pole consisting of a glass bottle at the end of an extendable pole, or other sampling equipment designed to collect a sample directly into a 1-liter glass bottle. Sample will not be transferred from the original sample bottle until analysis at the lab. Amber bottles will be sealed with Teflon-lined lids and samples will be transported and stored on wet ice or refrigerated at 4°C until extraction for chemical analysis. Sediment will be collected following procedures outlined in Bacey (2003). Sediment samples will be collected using either a Hollow coring device or the The Ekman dredge, depending on creek-bed or river-bed composition. Dissolved oxygen, pH, specific conductivity, and water temperature will be measured *in situ* at each site at the time of sample collection. Gauging/flow data will also be collected. Samples will be transported and stored on wet ice or refrigerated at 4°C until extraction for chemical analysis. #### VI. CHEMICAL ANALYSIS Chemical analyses will be performed by the California Department of Food and Agriculture's Center for Analytical Chemistry. Quality control will be conducted in accordance with Standard Operating Procedure QAQC001.00 (Segawa, 1995). Ten percent (10%) of the total number of analyses will consist of field blanks and blind spikes, to be submitted to the laboratory with field samples. All samples will be analyzed for bifenthrin, cyfluthrin, cypermethrin, esfenvalerate, lambda-cyhalothrin, and permethrin, and aqueous samples only will also be analyzed for a suite of organophosphate pesticides. Method titles and reporting limits for this study are reported in Table 2. For all pyrethroid water analyses, the whole samples, including any suspended sediment, will be extracted in the sample bottle (*in toto*) and the pyrethroid residues will be reported on a whole sample basis (water plus suspended sediment). Replicate samples will be collected at each sampling event and analyzed to determine suspended sediment concentration. #### VII. DATA ANALYSIS Concentrations of pesticides and degradation products in water and sediment will be reported as micrograms per liter (μ g/L) and μ g/Kg, respectively. Summary statistics will be provided in the final report. Detections will be compared to pesticide application data, precipitation records, and any available toxicity data. Water level gauging and flow data will also be reported. Suspended sediment concentrations will be used along with μ g/C data and estimated sediment organic carbon concentrations to estimate dissolved and sorbed pyrethroid concentrations in the whole water samples. # VIII. TIMETABLE Field Sampling: Chemical Analysis: Preliminary Memorandum: Final Report: May through September 2003 May through November 2003 April 2004 June 2004 # IX. BUDGET | Primary Analysis | mary Analysis | | | Cost (@ \$300/sample) | | |------------------------|-------------------------|-------------|---|-----------------------|--| | Organophosphate screen | 8 sites x 21 weeks = | 168 samples | = | 38,400 | | | Pyrethroids, Water | 8 sites x 21 weeks = | 168 samples | = | 38,400 | | | Pyrethroids, Sediment | 8 sites x 21 weeks = | 168 samples | = | 38,400 | | | Quality Control | | | | | | | Blind spikes | | 33 samples | = | 9,900 | | | Field blanks | | 33 samples | = | 9,900 | | | Total | | | | 135,000 | | #### X. REFERENCES - ARSUSDA. 2001. Agricultural Research Service, U.S. Department of Agriculture. [Online] Available: http://www.arsusda.gov/ppdb2.html - Bacey, N. 2003. Sediment Collection SOP. In Prep. - Bennett, K. 1997. Conducting surface water monitoring for pesticides. Environmental Hazards Assessment Program FSWA002.00. Department of Pesticide Regulation, Sacramento, CA - DPR. 2003. CDPR Ecotox Database. Data assembled by Jon Shelgren, Registration Branch, Department of Pesticide Regulation, California Environmental Protection Agency. - DPR. 2002. Pesticide Use Reporting. Annual 2001 http://www.cdpr.ca.gov/docs/pur/purmain.htm - DPR. 2001a. The California Department of Pesticide Regulation. Pesticide Chemistry Database. - DPR. 2001b. The California Department of Pesticide Regulation. Surface Water Database. - DPR. 2001c. The California Department of Pesticide Regulation. Well Monitoring Database. - Frey, J.W. 2001. Occurrence, distribution, and loads of selected pesticides in streams in the Lake Erie-Lake St. Clair Basin, 1996-1998. US Geological Survey Water-Resources Investigations Report 00-4169. - Kalkhoff, S.J., K.K. Barnes, K.D. Becher, M.E. Savoca, D.J. Schnoebelen, E.M. Sadorf, S.D. Porter, and D.J. Sullivan. 2000. Water Quality in the Eastern Iowa Basins, Iowa and Minnesota, 1996–98. US Geological Survey Water Resources Circular 1210. - Laskowski, D.A. 2002. Phusical and chemical properties of pyrethroids. Rev. Environ Contam Toxicol. 174:49-170 - Segawa, R. 1995. Chemistry Laboratory Quality Control. Environmental Hazards Assessment Program QAQC001.00. Department of Pesticide Regulation, Sacramento, CA. - U.S. EPA. 1996. Federal Register: May 24, 1996 (Volume 61, Number 102) - U.S. EPA. 2002. ECOTOX Database System. [Online] Available: http://www.epa.gov/ecotox/ Table 1. Pyrethroid Insecticide Applied in the Salinas River Basin and the San Joaquin River Basin during 2001. (DPR 2002) | | May | June | July | August | September | October | Total | |--------------------------|---------|-------|-------|--------|-----------|---------|---------| | BIFENTHRIN | | | | | | | | | Fresno [†] | 21.3 | 810.0 | 882.0 | 301.2 | 44.5 | 0.3 | 2,059.3 | | Madera [†] | 0.0 | 9.4 | 10.4 | 43.7 | 0.0 | 0.0 | 63.6 | | Merced [†] | 0.9 | 238.6 | 829.1 | 271.1 | 23.0 | 0.0 | 1,362.7 | | San Joaquin [†] | 0.0 | 89.4 | 19.7 | 33.6 | 15.1 | 0.8 | 158.6 | | Stanislaus [†] | 16.8 | 153.6 | 307.7 | 309.5 | 55.5 | 8.0 | 851.1 | | Monterey [‡] | 18.2 | 55.2 | 136.3 | 73.1 | 81.9 | 18.8 | 383.4 | | CYFLUTHRIN | | | | | | | | | Fresno | 849.7 | 160.2 | 909.7 | 1162.0 | 107.1 | 89.5 | 3278.2 | | Madera | 62.6 | 35.0 | 45.3 | 1.1 | 0.0 | 0.0 | 144.1 | | Merced | 0.0 | 49.8 | 43.9 | 96.8 | 17.6 | 12.2 | 220.3 | | San Joaquin | 0.4 | 0.0 | 1.3 | 0.0 | 0.0 | 0.0 | 1.7 | | Stanislaus | 239.5 | 12.3 | 44.4 | 21.5 | 10.7 | 0.0 | 328.4 | | Monterey | 0.2 | 0.2 | 0.5 | 0.5 | 0.1 | 0.5 | 2.0 | | CYPERMETHRIN | | | | | | | | | Fresno | 549.4 | 210.2 | 49.7 | 0.0 | 287.2 | 318.6 | 1,415.0 | | Madera | 0.0 | 1.4 | 0.8 | 0.0 | 0.0 | 0.0 | 2.1 | | Merced | 0.0 | 73.8 | 8.4 | 2.3 | 0.0 | 0.0 | 84.6 | | San Joaquin | | | | | | | | | Stanislaus | 19.7 | 19.7 | 17.2 | 22.6 | 21.6 | 21.7 | 122.4 | | Monterey | 199.6 | 206.4 | 334.8 | 419.3 | 293.7 | 148.2 | 1,602.1 | | ESFENVALERATE | | | | | | | | | Fresno | 356.7 | 180.0 | 168.8 | 305.9 | 305.9 | 131.7 | 1,449.1 | | Madera | 76.0 | 4.7 | 115.5 | 13.1 | 3.9 | 0.0 | 213.1 | | Merced | 225.8 | 221.7 | 292.3 | 235.9 | 56.1 | 12.0 | 1,043.8 | | San Joaquin | | | | | | | | | Stanislaus | 437.1 | 317.2 | 892.6 | 134.8 | 4.2 | 0.0 | 1,785.9 | | Monterey | 210.6 | 388.8 | 406.9 | 395.7 | 456.0 | 331.2 | 2,189.1 | | ?-CYHALOTHRIN | | | | | | | | | Fresno | 123.6 | 198.8 | 305.8 | 189.1 | 46.5 | 61.8 | 925.7 | | Madera | | | | | | | | | Merced | 114.8 | 37.0 | 30.0 | 10.7 | 32.2 | 6.5 | 231.2 | | San Joaquin | | | | | | | | | Stanislaus | 18.6 | 23.1 | 80.3 | 43.1 | 50.0 | 26.9 | 242.0 | | Monterey | 440.8 | 378.9 | 350.2 | 369.6 | 485.1 | 255.5 | 2,280.1 | | PERMETHRIN | | | | | | | | | Fresno | 319.7 | 220.9 | 862.0 | 514.9 | 1413.3 | 3,493.8 | 6,824.7 | | Madera | | | | | | | | | Merced | 1,138.2 | 769.4 | 960.8 | 249.8 | 120.7 | 16.8 | 3,255.7 | | San Joaquin | | | | | | | | Stanislaus 632.7 411.8 1,515.9 78.7 5.5 2.6 2,647.1 Monterey 5,980.2 4,548.5 3,921.8 4,068.8 4,219.9 2,690.4 25,429.7 [†] San Joaquin River Basin Counties [‡] Salinas River Counties Table 2. Pyrethroid Physical and Toxicological Characteristics | Pesticide | $\mathbf{K_{OC}}^{\dagger}$ | Solubilit
y (mg/l) [†] | Half-life
Soil (days) [†] | Hydrolytic (pH 7) Half-life (days) [†] | Toxicity
LC ₅₀
Daphnia Magna
(ppb) [‡] | |---------------|-----------------------------|------------------------------------|---------------------------------------|---|---| | Bifenthrin | 237000 | 1.4e ⁻⁵ | 96-425 | Stable | 1.6 | | Cyfluthrin | 124,000 | 2.3e ⁻³ | 12-34 | 183 | 0.16 | | Cypermethri n | 310,000 | 4.0e ⁻³ | 28-55 | 274 | 1.25 | | Esfenvalerate | | 6.0e ⁻³ | 39-94 | Stable | 024 | | ?-cyhalothrin | 326,000 | 5.0e ⁻³ | 43 | Stable | 0.23 | | Permethrin | 277,000 | 5.5e ⁻³ | 40-197 | Stable | 0.075 | [†] Laskowski, 2002 [‡] DPR 2001. TABLE 3. California Department Of Food And Agriculture, Center For Analytical Chemistry Synthetic Pyrethroid, Organophosphate, Herbicide Residue Analytical Screens. # Organophosphate Pesticides in Surface Water by GC Method: GC/FPD | Compound | Reporting Limit (µg/L) | |-------------------|------------------------| | | | | Azinphos methyl | 0.05 | | Chlorpyrifos | 0.04 | | Diazinon | 0.04 | | DDVP (dichlorvos) | 0.05 | | Dimethoate | 0.04 | | Disulfoton | 0.04 | | Ethoprop | 0.05 | | Fenamiphos | 0.05 | | Fonofos | 0.04 | | Malathion | 0.04 | | Methidathion | 0.05 | | Methyl Parathion | 0.03 | | Phosmet | 0.05 | | Thimet (Phorate) | 0.05 | | Profenofos | 0.05 | | Tribufos | 0.05 | # Pyrethroid Pesticides in Surface Water; Method: GC/EC | Compound | Reporting Limit (µg/L) | |---------------|------------------------| | Bifenthrin | † | | Cyfluthrin | † | | Cypermethrin | † | | Esfenvalerate | 0.05 | | ?-Cyhalothrin | † | | Permethrin | 0.05 | # Pyrethroid Pesticides in Sediment; Method: GC/EC † | Compound | Reporting Limit (mg/g) | |---------------|------------------------| | Bifenthrin | 0.01 | | Cyfluthrin | 0.01 | | Cypermethrin | 0.01 | | Esfenvalerate | 0.01 | | ?-Cyhalothrin | 0.01 | | Permethrin | 0.01 |